6,447 research outputs found

    Diffusive versus displacive contact plasticity of nanoscale asperities: Temperature- and velocity-dependent strongest size

    Full text link
    We predict a strongest size for the contact strength when asperity radii of curvature decrease below ten nanometers. The reason for such strongest size is found to be correlated with the competition between the dislocation plasticity and surface diffusional plasticity. The essential role of temperature is calculated and illustrated in a comprehensive asperity size-strengthtemperature map taking into account the effect of contact velocity. Such a map should be essential for various phenomena related to nanoscale contacts such as nanowire cold welding, self-assembly of nanoparticles and adhesive nano-pillar arrays, as well as the electrical, thermal and mechanical properties of macroscopic interfaces

    Optimized Decimation of Tensor Networks with Super-orthogonalization for Two-Dimensional Quantum Lattice Models

    Full text link
    A novel algorithm based on the optimized decimation of tensor networks with super-orthogonalization (ODTNS) that can be applied to simulate efficiently and accurately not only the thermodynamic but also the ground state properties of two-dimensional (2D) quantum lattice models is proposed. By transforming the 2D quantum model into a three-dimensional (3D) closed tensor network (TN) comprised of the tensor product density operator and a 3D brick-wall TN, the free energy of the system can be calculated with the imaginary time evolution, in which the network Tucker decomposition is suggested for the first time to obtain the optimal lower-dimensional approximation on the bond space by transforming the TN into a super-orthogonal form. The efficiency and accuracy of this algorithm are testified, which are fairly comparable with the quantum Monte Carlo calculations. Besides, the present ODTNS scheme can also be applicable to the 2D frustrated quantum spin models with nice efficiency
    • …
    corecore